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F–69622 Villeurbanne, France

Physics Opportunities from the RHIC Isobar Run

RIKEN BNL Research Center
held virtually January 25-28, 2022

M. Bender (IP2I Lyon) Nuclear shapes 25 January 2022 1 / 24



The concept of intrinsic shapes

The concept of the ”intrinsic shape” of an atomic nucleus refers to

the geometric arrangement of nucleons

a non-observable feature of the nucleus’ wave function

the interpretation of nuclear observables in terms of a classical picture
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Setting the frame I: Symmetries

Noether’s first theorem: ”Every differentiable symmetry of the action of a physical
system with conservative forces has a corresponding conservation law.”
E. Noether, Nachr. Ges. Wiss. Göttingen, Math. Phys. Kl. 1918, 235.

Symmetries of the nuclear Hamiltonian and

Translational invariance

Galilean/Lorentz invariance

Time-translational invariance

Rotational invariance

Time-reversal invariance

Space-inversion invariance

Global gauge invariance

Note: ”invariance” does not mean that the nuclear many-body wave function does not
change under such transformation, but that it transforms according to the rules of group
representation theory for the group associated with the respective symmetry
transformation.
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Setting the frame I: Symmetries

Nuclei are isolated self-bound systems (with some Symmetries of the nuclear
Hamiltonian:

Translational invariance ⇒ momentum conservation

Galilean/Lorentz invariance ⇒ only center-of-mass momentum changes when
changing inertial frame

Time-translational invariance ⇒ angular energy conservation

Rotational invariance ⇒ angular-momentum conservation

Time-reversal invariance (no quantum number associated with anti-linear operators)

Space-inversion symmetry ⇒ parity conservation

Global gauge invariance ⇒ particle-number conservation

There are quantum numbers of the nuclear many-body state associated with the
conserved quantities.
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Setting the frame I: Symmetries II

These symmetries have a number of important consequences

Conserved quantum numbers lead to selection rules for expectation values and
transition matrix elements.

Symmetries introduce correlations in the nuclear many-body wave function, such
that the nucleons cannot evolve each independently from one another.

A useful, but not conserved symmetry is the one under transformation in isospin
space, which leads to approximate isospin quantum numbers (broken mainly by
electromagnetic interactions, and on a much lesser level also by small differences in
the strong interaction between nucleons).
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Setting the frame II: Relevant phenomenology of nuclei

The features of the nucleon-nucleon interactions have as a consequence that nucleons of the
same species tend to couple pairwise to pairs with L = 0, S = 0.

⇒ ground states of even-even nuclei have angular momentum J = 0 and parity
π = +1.
⇒ angular momentum and parity of the ground state of an odd-mass nucleus
determined by ”unpaired” nucleon, Jπ = 1/2±, 3/2±, 5/2±, . . .
⇒ angular momentum and parity of the ground state of an odd-odd nucleus
determined by the coupling of the ”unpaired” proton and neutron, Jπ = 0±, 1±, 2±,
3±, . . .

From the rules of angular-momentum and parity coupling follows that

the multipole moments Q̂`m of the ground states of even-even nuclei are all zero for
any ` > 0

〈0+|Q̂`m|0+〉 = 0

the ` moment of excited states of even-even nuclei, and states of odd- and odd-odd
nuclei can be measured if ` is even and J sufficiently large

〈Jπ |Q̂`m|Jπ〉 6= 0 if J ≥ `/2 and ` even

The diagonal matrix elements of all odd-` multipole moments is zero

〈Jπ |Q̂`m|Jπ〉 = 0 if ` odd
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Setting the frame II: Relevant phenomenology of nuclei

Transition matrix elements of multipole moment operators between states are in general non-zero

even parity multipole moments ` = 2n ≥ 2 (quadrupole, hexadecapole, . . . )

〈J±f |Q̂`m|J
±
i 〉 6= 0

because the photon has spin 1, there are no electromagnetic E0 transitions that lead to γ
emission

〈J±|Q̂00|J±〉 = 0

(but there are E0 transitions via conversion-electron spectroscopy, for which the transition
operator is r2)

odd parity multipole moments ` = 2n + 1 (dipole, octupole, . . . )

〈J∓f |Q̂`m|J
±
i 〉 6= 0 if |Ji − Jf | ≥ `/2 and ` odd

The reduced E2 transition probability is given by

B(E2; J′ν′ → Jν) =
e2

2J′ + 1

+J∑
M=−J

+J′∑
M′=−J′

+2∑
µ=−2

|〈JMν|Q̂2µ|J′M′ν′〉|2

=
e2

2J′ + 1

∣∣∣〈Jν||Q̂2||J′ν′〉
∣∣∣2

The spectroscopic quadrupole moment is given by

Qs(J) =

√
16π

5
〈JJν|Q̂2µ|JJν〉
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Systematics of quadrupole collectivity

The Nuclear Landscape 39

A dramatic way to illustrate both the collective behavior of nuclei far from
closed shells and the evolution of structure is to examine a particular property
over extended sequences of nuclei—that is, to examine nuclear systematics.
Three of the most telling data are collected in Figs. 2.12-2.16 . Figure 2.12
shows the energies of the first excited 2+ states (2 + levels) in even-even nuclei
throughout the periodic table. Figures 2.13 and 2.14  show a more detailed view
of the same data in two particular regions: nuclei around mass A = 100, and
those near A = 130. As we have seen near closed shells, £2+ is rather high
lying, typically 1 to 2 MeV. In contrast, in collective nuclei, the 2t

+ state can be
described as either a vibrational or rotational excitation and occurs at much

Fig. 2.16. B(E2:0+
1 -> 2^) values for all even-even nuclei. (Bohr, 1975.)

The Nuclear Landscape 37

Fig. 2.12. £2! values for all even-even nuclei (Raman, 1987).

left, are arranged in sequences of single panicle intrinsic (Nilsson) states, each
with a rotational hand built on top of it on the right. Another example of a
nucleus that can be classified in similar manner is 169Yb, which we looked at in
Fig. 2.4 .

We note that the rotational bands in 161Dy  range in character from several
examples (labeled 5/2-[523], 3/2-[532], 5/2-[512]) with regular spacings that in-

Fig. 2.13. /?2j values (in keV) plotted against ATor the/I = 100region.

EJ =
J(J + 1)

2Θ

where Θ is the nuclear rotational moment of
inertia, that grows with deformation.

These are ”old” plots to avoid overlapping structures visible when plotting all of today’s available data

taken from R. Casten, ”Nuclear Structure from a Simple Perspective”, Oxford University Press (1990)
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Schematic attribution of an intrinsic multipole moment to a multipole
moment measured in the laboratory

TRANSITION MOMENTS 135

B. Rotational modeL--The phenomenological Hamiltonian for a system in
which a number of nucleons are coupled to a rotator is written as

where ~, L, and J~ are the ~th component of the ~oment of inertia, of the total
angular momentum, and of the intrinsic angular momentum respectively. The
last quantity is a sum of individual nucleons. The last term in Equation V.9 is
the intrinsic Hamiltonian which represents the intrinsic motion. In this section
the rotational motion for axially symmetric shapes is considered:

5~ = 5~ = 5 V.10.

The corresponding wavefunction is given by

~//1 2I+ 1
~IIMK =

67rT~ if" ~:,0) V.11.

where IDM~r(oi) is the rotational matrix, K is the third component of the total
angular momentum while xK is the intrinsic wavefunction, and the eigenvalue of
J3 is assumed to be K. The operator (as(r) represents the rotation by ~r around
the second coordinate axis.

In general the electromagnetic moment is now written in the rotating coordi-
nate system

u) v. 2.

where ~Ch, ~) is the moment in the rotational coordinate system. In general the
reduced transition rate is given as

B(X;  r,K, 5K ) = --
where

1
V.13.

= (2I, -k 1)~[(I,K,~K] -- K, ] I,K,)(K~[ ~’(;~, K] -- K,) ] K,) V.14.

~e magnetic ~pole operator yo~ ~ expressed ~ terms of rotational ~o-
malefic ratio g~ and the ~trinsic g factor

~e malefic dipole moment is ~ven
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taken from S. Yoshida & L. Zamick, Ann. Rev. Nucl. Sci 22 (1972) 121
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Schematic phenomenology of quadrupole collectivity

(Spherical) vibrator:15 2 Collectivity, Phase Transitions, Deformation

Fig. 6.4 . B(E2) values in the harmonic vibrator model.

Let us now consider the magnitude of these B(E2) values between phonon
states as illustrated in Fig. 6.2 and 6.4 , where we assign a value of unity for the
decay of the one-phonon 2+ state to the ground state. Since, in first order,
multiphonon excitations simply consist of the piling on or superposition
of more than one identical phonon, it might seem that the B (E2) value
for the decay of the two-phonon state would also be unity. However, this
neglects the fact that there are two phonons in the initial state and that either
one of them may be destroyed. This gives twice as many decay possibilities and
therefore B(E2:(W = 2) -> 1) = 2, as indicated in Fig. 6.2. Continuing this, one
can state a general expression for the decay of the N ^-phonon state to the
(A^A-l)-phonon state. A transition N^ -> Wph-l must be accomplished by an
E2 operator of the form b, that is, a one-phonon destruction operator. By Eq.
6.2

and so the B(E2) value is proportional to AT .
This general statement, however, obscures the important point that, for

Nfh> 3 , angular momentum conservation allows the decay of some initial
states to more than one final state. For example, the 2+, 3 +, and 4 +, three-

transition moments are relative
to B(E2, 2+

1 → 0+
1 )

Deformed rotor as a function of triaxiality γ
18 8 Collectivity, Phase Transitions, Deformation

Fig. 6.18. Normal and anomalous levels of the triaxial rotor (Preston, 1975).

actually interchange so that the K = 0  amplitude is larger than the K = 2  one.
(The 4j+ amplitudes do not quite "cross" since there is actually substantial
three-state mixing involving the 43

+ state.) The interchange of amplitudes in
the 42

+ level occurs near the energy inflection point in Fig. 6.18 . The decreasing
trend of the quasi-y-band, or anomalous level energies, would have caused
these energies to cross the normal levels at this point. Instead, the interaction
causes a repulsion. This is a nice example of this two-state mixing effect
discussed in Chapter 1.

In practical applications of the Davydov model, one usually extracts 7 from
the energy ratio E2^l E?.\ of the first two 2 +states. This ratio is given in Table
6.10  for several values of 7 and is plotted in Fig. 6.19 (along with two B(E2 )
ratios). It can be calculated for any 7 value from the expression

19 0 Collectivity, Phase Transitions, Deformation

Fig. 6.19. Dependence of several observables on ^(compare Fig. 6.42).

where the numerator and the denominator are the individual B(E2) values.
Note that both B(E2) values in R2 vanish for 7= 0°, yet they have a finite ratio
that is the Alaga rule: the vanishing is reasonable since for 7= 0°, E2$ I Ei \ -»  °° ,
corresponding to infinite rigidity in the 7direction and to vanishing vibrational
amplitude. R2 increases rapidly with 7 and R^ —> °° for 7= 30°. This latter result
is identical to the selection rule for an alternate model of axial asymmetry that
we will soon discuss, the 7 flat or y-unstable model of Wilets and Jean in which
the 2 transition is forbidden.

Some other B(E2) values and branching ratios are given in Table 6.10.
Those corresponding to rotational transitions in either the 7 or ground bands,
are nearly 7 independent. Others vanish at both 7= 0° and 30° but attain small,

Note: in microscopic models, the spectra might evolve quicker with γ

Note: real nuclei are more complicated, as are spectra predicted by microscopic models

taken from R. Casten, ”Nuclear Structure from a Simple Perspective”, Oxford University Press (1990)
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Deformed odd nuclei

Another phenomenon that is sensitive to
deformation are the coexisting rotational bands of
odd-mass nuclei.

Coupling of single-particle states to a deformed
rotational core

Successful modeling requires internal consistency
of deformed single-particle spectrum, moment of
inertia of rotational motion and electromagnetic
moments of in-band transitions.

Similar (but more complicated) for odd-odd nuclei
and single-particle excitations in even-even nuclei.

taken from S. G. Nilsson & I. Ragnarsson, ”Shapes and Shells in Nuclear Structure”, Cambridge University Press (1995).
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Charge density 6= proton density

Coupling to electromagnetic fields
⇒ measures charge distribution 6= proton
distribution
because of their substructure, protons and
neutrons have an intrinsic charge distribution
of finite size
because of electromagnetism being manifestly
Lorentz-covariant, there are relativistic
corrections to the charge density, such as a
contribution from the coupling to the
divergence of the spin current, ∇ · J of
protons and neutrons, a Darwin correction etc

intrinsic charge distribution of a proton and a neutron
RE LATIVISTIC CORRECTIONS TO THE E LASTIC E LECTRON. . . 247

which can be folded with o~~(r) using the result of
the Appendix to get the spin-orbit contribution to
the effective charge distribution.

1.3-

III. DETAILS OF THE CALCULATION

A. Gaussian model for the proton charge form factor

n

G@~(q ) = Q Q(e "i (3.1)

with the constraint on a,. such that

(3.2)

Most of the theoretical calculations on the elas-
tic electron scattering have used a normalized
Gaussian. In performing such a calculation one
has always taken into consideration only the rms
radius of the proton. However, such a choice can
give a good representation of the proton charge
form factor Gs~(q') only for small momentum
transfer. Realizing this fact, Bertozzi et al. '
have replaced Gaussian smearing by an exponen-
tial smearing corresponding to a dipole fit for the
charge form factor. In the present work we use a
linear combination of Gaussian shapes for this. In
this model the proton charge form factor G»(q')
has been approximated by

1.0
0.9
08
0.7

cv Q6

0.5
~QL
a 0.3

0.2
0.1

0 5 10 15 20 25 30 35 40 45

q2 (ffTl-2 )

{b)

FIG. 1. Finite proton charge distribution correspond-
ing to three Gaussians ( --) obtained as a result of a g2
fit to the proton charge form factor shown by error bars
in (b). Also, in (a) the proton charge distribution cor-
reapOnd&r1f tO One Gauaaian iS giVen (—). FOr COm-
parison the charge form factor corresponding to one
Gaussian (—) and the exponential model (-~-~) are
shown in (b).

giving rise to

n,(r) = a. . .),g, e(7Tr]
i

(3 3)

~ Gsp'(qa') Gsp'(qg') '-
X p=Z

k
(3 4)

where 6k denotes the standard deviation in the ex-
perimental value of t"»' for momentum transfer
qk fm as given by price et al." The optimum
X'~ obtained for this set of data was found to be
17.46 corresponding to the values of a„r 2 given
below and the mean square radius given as (r»')
=0.77542 fm'

2 1 2 3
a,. 0.506 373 0.327 922 0.165 705

r, ' (fm') 0.431 566 0.139140 1.525 540
The y's for the dipole fit G»=(1+ q'/0. 71) '

As mentioned earlier, the advantage of such a mod-
el turns out in folding this form of ps~(r) with the
point proton charge distribution.
In the present work we have takenn =3, and the

values of a, 's and r, 's have been determined by
minimizing the following expression:

1 Q2r 2 r 2 +
2m 2 (3.5)

However, in the present calculation these terms

[q' in (GeV/c)'] corresponding to a mean square
radius 0.65812 fm' turned out to be 79.89.
A comparison of various fits to the experimental

data for G»'(q') is given in Fig. 1(b). From the
comparison it is obvious that the present model
gives an excellent fit to the experimental data,
thus giving confidence in replacing the dipole fit.
On the other hand, the normalized Gaussian fit
with the same mean square radius as that of the
present model shows considerable deviation even
for moderate values of momentum transfer. As
stated earlier the aim of the present work is also
to make a reliable estimate of the error caused
in the theoretical cross section due to the use of
a single Gaussian smearing for the proton charge.
The spatial distribution of the proton charge cor-
responding to the present model together with the
normalized Gaussian with the same mean square
radius is shown in Fig. 1(a). It is worth pointing
out, that the values of r,.' tabulated earlier are
subjected to renormalization because of the inclu-
sion of the Darwin-Foldy term and the correction
due to the spurious center of mass motion:

248 HARISH C HANDRA AND GERHARD SAUER 13

cancel each other for mass number A = 208 and
b~=4.4 fm~

B. Gaussian model for the neutron charge form factor

The theoretical shape for the neutron charge
form factor Gz„(q') has been determined in a way
similar to that of the proton charge form factor.
For this we take a combination of two Gaussians
in the following form:

(q2) z + /4 + + r /4 (3.6)
However, in view of the accurate knowledge of the
meansquare charge radius, "~,' and r ' are sub-
jected to the constraint:

r '=rav'+0. 038 664 fm' (R,„')= ', r,„'-. (3.7)

2
X Eg=

Gz, (Qq') —Gz„(qq') (3.8)

For the experimental value of Gz„(q„') we used the

This automatically guarantees a mean square neu-
tron charge radius of -0.116 fm'. The unknown
parameter ~,„' has then been determined by mini-
mizing the value of X '~„given by:

data analyzed by Bertozzi et al. in their work with
the corresponding standard deviation b, „as shown
by error bars. The value of X'~„obtained for this
model was found to be 15.27, corresponding to
(R,„') equal to 0.76112 fm'. This value of (R,„')
bears a striking similarity to the proton charge
mean square radius corresponding to the three
Gaussian model. Also, this model gives a good
visual fit when compared with the model of Qalster
et al."who obtained for X'~„a best fit value equal
to 29.3 for a similar set of data on the neutron
charge form factor. Confidence in the present
model is further restored when one compares the
value of X'~„with the exponential model used in
Ref. 7. The best fit corresponding to this model
is obtained for (R.,') equal to 0.7242 fm' which
yielded for )t'z„a value of 18.15. For (R,„') equal
to 0.64 fm', which was preset by Bertozzi et aI.
from consideration of the proton charge radius,
we got 20.78 for X'~„. Neutron charge smearing
corresponding to the present model is shown in
Fig. 2(a) corresponding to the theoretical form
factor given in Fig. 2 (b). The values of r, ' given
by Eq. (3.7) have been renormalized to take into
account the Darwin- Foldy factor.

0.20-
0.15—

0.10—
E—0.05-
CL ppp
C4

g 0.05-
0.10-
0.15-

0.15-

0.10—

0.5

(a)

(b)

I

2.5

C. Model for the magnetic form factor for the spin-orbit
contribution

Assuming the law of scaling (G„,= )/. 'Gz~), a
theoretical form for f~(q') defined by Eq. (2.9) can
be written as

fp(Q') = — g (2& +1)Gzp(Q ) (3.9)

where G»(q') is the theoretical fit for the proton
charge form factor. A similar simplification for
the neutron form for f„(q') is not possible because
there does not exist such a scaling law connecting
the neutron charge form factor to the proton charge
form factor. Even so, an expression for f„(q') can
be given in terms of the theoretical form factor for
the proton and neutron charge form factor:

0.05- f.(//') =-4 .(2& "Gz~-Gz. )1 (3.10)

0.0

0,05-

I

10
I

15

q2( f~-2)

I

20
I

25

FIG. 2. Finite size neutron charge distribution arising
from a combination of two noxmalized Gaussians with
different half widths are shown in (a). The width of the
Gaussians are obtained by a g fit to the experimental
neutron charge form factors with the constraint that it
gives the experimental mean square radius. The ex-
perimental data of (b) are taken from the work of
Bertozzi et al. (Ref. 7).

T

( ~)
2.K + z7 qa 2/4
4m~ (3.11)

The spatial distributions for the expressions f, (q')
thus defined can, in principle, be used for folding
with ozz(r) in order to get the spin-orbit contribu-
tion to the effective charge density. However, in
view of the small contribution to the effective
charge distribution from ozz(r), an exact know-
ledge of (2z'+, ++,) is not essential. As a conse-
quence of this fact the expression for f, (q') has
been approximated by

charge distribution of 208Pb

RE LATIVISTIC CORRECTIONS TO THE E LASTIC E LECTRON. . . 249

p (frn-3)
Q07

0.05-
ON-
0.03.
082- II
001

t i s 2 t + a- a.~ ~- 5-0.01 - /
-0.02- I

I-0.03- II-0.01 - ~I
-0.05»

finite proton density
100x----- finite neutron correction
100it- —.—spin-orbit correction

6 ~, ' 8 9 - ff ll 12
r r (frn)

0.07-

0,04-

0,03-

m

FIG. 3. Finite proton density (—), finite neutron
size correction (—-), amI spin-orbit correction (-~—)
calculated for Pb using Kolb's wave function. Finite
neutron and spin-orbit corrections have been multiplied
by a factor of 100 to magnify the extent of these correc-
tions.

0,9-

-00)-

Kgx@
(208Pb )

I ~l~~ I7~~8 9r r (trn)

p (208pb)
7/2

where e, equals one and zero for proton and neu-
tron, respectively. For r„' we have used a value
equal to 0.427, corresponding to a mean square
radius of 0.64 fm'.

IV. DISCUSSION OF THE RESULTS
A. Charge distribution and the influence of various

corrections

Contributions from various corrections to the
effective charge corresponding to the '"Pb wave
function obtained by Kolb et al. are separately
shown in Fig. 3. The presence of negative neutron
charge in the surface region is to reduce the tail
of the effective charge. This effect was already
noted by Bertozzi et al. , ' who also found a similar
neutron charge distribution using a combination of
two exponentials. The spin-orbit contribution

-3
QQC f . (fm)'LS

0.03-

0.02-

0.01-

- 0.01-

10 r {fm)

- Q.02-

-0.03-

-0.04-

FIG. 4. Comparison of the spin-orbit correction terms
arising from i&&p neutrons and itt&~t protons. The net
contribution to the spin-orbit correction term from
these orbits (—-) has been obtained by addition of these
terms.

FIG. 5. Comparison of f&g&" spin contribution in Ca
and Pb. The curve for Ca has been obtained by using
Nege1e's wave function for the fYg& neutron orbit. Also
we compared the spin-orbit contribution for gsh and
g&~2 protons (—-).
shown in this figure is relatively much smaller
in comparison with neutrons. The significant con-
tribution to this arises due to kgb/2 protons and
i»&, neutrons which do not cancel exactly as can
be seen in Fig. 4. A small contribution in the in-
terior of the nucleus arises from the difference
in j =l +- and j =l --,' radial wave functions. In
Fig. 5 we have also calculated the spin-orbit con-
tribution from f,&, neutrons for '"Pb and com-
pared it with f,~, neutrons in "Ca using Negele's
wave function. A small contribution at the origin
is a result of smearing due to the finite magnetic
radius of the nucleons. A strong resemblance be-
tween this and one calculated by Bertozzi et al. '
(dash-dot curve in Fig. 4 of Ref. 71 also shows the
adequacy of an approximate parametrization of
the magnetic form factor discussed in Sec. II C.
A comparison of the f», neutron contribution for' 'Pb with 'Ca shows a larger reduction in the
former case. Such an effect arises owing to the
outward stretching of the radial wave function in
the larger nuclei. In Fig. 5 we also compared the
spin-orbit contribution of filled g, &, and g, ~, pro-
ton orbits. The net contribution arising from filled
Og orbitals arises from nonidentical radial wave
functions for different j states. A coherent addition
of such small terms in some cases might contri-
bute somewhat to the effective charge distribution,
though in the present case such an effect is absent.
The root mean square radius for the proton charge

Chandra et al, PRC 13 (1976) 245
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Another indicator of deformation: systematics of (charge) radii

⇐ difference between calculated and experimental
charge radius at four levels of modelling (from
spherical mean field to symmetry-restored
beyond-mean-field with shape fluctuations)
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M. B., G. F. Bertsch and P.-H. Heenen, Phys. Rev. C 69 (2004) 034340
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Beware of coexisting conventions - Experiment

Cartesian vs spherical multipole moments

Atomic physicists prefer to work with cartesian multipole tensors or an expansion in
Legendre polynomials, for example

Q0 =

∫
d3r ρ(r)

(
3z2 − r2) =

√
5

16π
Q20 (axial quadrupole moment)

Nuclear spectroscopists prefer to work with spherical tensors, for example

Q20 =

∫
d3r ρ(r) r 2 Y20(r) =

√
16π

5
Q0 (axial quadrupole moment)

Note that there are also other definitions of spherical harmonics that differ in
normalisation and phase convention.

Dimensionless (charge) multipole moments

β`m =
4π

3R`Z
Q`m

where R is usually (but not always!) taken to be R = 1.2A1/3 fm
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Beware of coexisting conventions - Theory

Position of the nuclear surface in terms of a multipole expansion

R(ϑ, ϕ) = Rd [{αLM}]
[
1 +

∑
LM

αLM YLM(ϑ, ϕ)
]
.

Assuming incompressible nuclear matter, ρ = 3A/(4πR3
0 ), and a sharp surface, the

proportionality constant Rd [{αLM}] is fixed by volume conservation

A =

∫ 2π

0
dϕ

∫ π

0
dϑ sin(ϑ)

∫ R(ϑ,ϕ)

0
dr r2 ρ

=
AR3

d [{αLM}]
4πR3

0

∫ 2π

0
dϕ

∫ π

0
dϑ sin(ϑ)

[
1 +

∑
LM

αLM YLM(ϑ, ϕ)
]3

Multipole moments

〈Q`m〉 =

∫ 2π

0
dϕ

∫ π

0
dϑ sin(ϑ)

∫ R(ϑ,ϕ)

0
dr r2 ρ r` Y`m(ϑ, ϕ)

=
3A

4πR3
0

R`+3
d

`+ 3

∫ 2π

0
dϕ

∫ π

0
dϑ sin(ϑ)Y`m(ϑ, ϕ)

[
1 +

∑
LM

αLM YLM(ϑ, ϕ)

]`+3
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Surface deformation vs multipole moments

For a purely quadrupole-deformed surface one has

R(ϑ, ϕ) = Rd [{αLM}]
[
1 + α20 Y20(ϑ, ϕ)

]
Rd = R0

(
1 +

3

4π
α2

20 +
1

(4π)3/2

6
√

5

21
α3

20

)−1/3

' 1−
1

4π
α2

20 −
1

(4π)3/2

6
√

5

21
α3

20

β20 =
R5
d

R5
0

(
α20 +

√
5

4π

4

7
α2

20 +
5

4π

6

7
α3

20 +
5

4π

√
5

4π

20

77
α4

20 + · · ·
)

= α20 +

√
5

4π

4

7
α2

20 −
5

4π

1

7
α3

20 −
5

4π

√
5

4π

94

231
α4

20 + · · ·

Expressions get much more complicated when the surface has also higher-order deformations.

Note: Experimentalists sometimes re-express their measurements for multipole moments in terms of surface deformation in a model-dependent way.
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Do nuclei have one intrinsic shape?

Shape fluctuations: nuclear wave function
is spread over a large range of deformation

Shape coexistence: two or several minima
yielding states of different deformation in
the same nucleus

Bender, Bonche, Duguet, Heenen, PRC 69 (2004) 064303
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Do nuclei have one intrinsic shape?

Bender, Bonche, Duguet, Heenen, PRC 69 (2004) 064303.
Experiment: Grahn et al, PRL 97 (2006) 062501

tion in the droplet model with !2 around 0.1 improves the
agreement with the data for 184–190Pb, but is inconsistent
with spectroscopic properties [3,11,32]. More realistic ap-
proaches that provide a good description of the coexisting

bands in the neutron-deficient lead isotopes are the beyond
mean-field calculations [4,18] and the Interacting Boson
Model [16,33,34].

The model used in [4] mixes mean-field wave functions
all having a different axial quadrupole deformation.
Around midshell where the lead isotopes are soft, the
collective wave function is spread over a large number of
configurations, and the notion of spherical or deformed
becomes ill defined. One can however still measure the
importance of deformed configurations in the collective
wave function by averaging the deformation of the mean-
field wave functions with their weight in the former. A
collective wave function with a distribution of components
symmetric with respect to the spherical configuration will
have a mean deformation close to zero and can be consid-
ered as spherical. This was indeed the case for the ground
state of the lead isotopes studied in [4]. The resulting hr2i
values underestimate the experimental data and decrease
too quickly with decreasing N (Fig. 3).

The global study of the ground-state properties within
the same formalism presented in [18] points at the sensi-
tivity of the isotope shifts to the details of the effective
interaction. We have verified that the Skyrme interaction
SLy4 used in [18] instead of SLy6 used in [4] brings only
marginal changes. By contrast, the slight reduction of the
pairing strength from [4] to [18] has a significant effect on
the precise balance between excited prolate and oblate
configurations but leads only to a very small increase in
the mean deformation of the ground state. As seen in Fig. 3,
this tiny modification leads to strongly different radii
which overestimate the experimental data showing that
isotope shifts are very sensitive to correlations in the lead
ground-state wave functions.

The "hr2i data are also compared to results from the
configuration mixed IBM calculations where explicit mix-
ing between the configurations resulting from regular 0p!
0h and intruder 2p! 2h and 4p! 4h excitations across

 

Neutron Number N
100 105 110 115 120 125 130 135

]2
〉 [

fm
2

〈rδ

20.5 fm

N
=1

04

N
=1

26

Pb

Hg

Pt

FIG. 2. Mean square charge radii for the lead [22,31,37],
mercury [20], and platinum [21] isotopes, represented by the
circles (ground state) and triangles (isomeric states), compared
to the predictions of the droplet model [32], represented by the
solid lines. The reference isotope for each element is circled. The
error bars on the experimental results are smaller than the
symbol size. The distance between the different chains is chosen
arbitrarily for better display. The new data points from this work
are displayed with full symbols.
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FIG. 3. Difference from the experimental mean square charge
radii (Expt), the beyond mean-field calculations with normal [4]
(MF) and decreased pairing [18] (MF"), and the IBM calcula-
tions (IBM) to the droplet model calculations for a spherical
nucleus. Isodeformation lines from the droplet model at !2 #
0:1 and 0.15 are shown.

TABLE I. Isotope shifts "#A;208
exp in atomic transitions and

"hr2iexp in mean square charge radii relative to 208Pb, deduced
from this work. The tabulated errors reflect only the isotope shift
uncertainties; the total errors are 0:025 fm2 for 182Pb, 0:013 fm2

for 183–185Pb, and 0:010 fm2 for 186–190Pb, including errors on
the electronic factor and mass shifts.

Isotope T1=2 [s] I "#A;208
exp [GHz] "hr2iexp [fm2]

190Pb 71 0$ !15:86%10& !0:839%5&
189Pb 51 3!

2 !16:82%15& !0:890%8&
189mPb ' ' ' 13$

2 !17:35%20& !0:918%8&
188Pb 25.1 0$ !17:57%12& !0:930%6&
187Pb 15.2 3!

2 !18:78%12& !0:993%6&
187mPb 18.3 13$

2 !19:37%12& !1:025%6&
186Pb 4.82 0$ !19:81%10& !1:048%5&
185Pb 6.3 3!

2 !20:66%15& !1:093%8&
185mPb 4.3 13$

2 !21:26%15& !1:125%8&
184Pb 0.49 0$ !21:74%10& !1:150%5&
183Pb 0.535 3!

2 !22:95%15& !1:215%8&
183mPb 0.415 13$

2 !23:54%15& !1:246%8&
182Pb 0.055 0$ !24:56%25& !1:299%12&

PRL 98, 112502 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
16 MARCH 2007

112502-3de Witte et al, PRL 98 (2007) 112502
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Building models that use/employ/imply the concept of intrinsic shapes

Self-consistent mean-field models (aka Hartree-Fock (HF), HF+BCS,
Hartree-Fock-Bogoliubov (HFB), nuclear density functional theory, single-reference energy
density functional method, . . . )

Auxiliary product states |Φ〉 as fundamental building block ⇔ assumption of independent
single-particle (or independent quasiparticle) states

|ΦHF〉 =
A∏

k=1

â†k |−〉 or |ΦHFB〉 =
∏
k>0

Deformation energy landscapes can be constructed using constraints

The experience of 50+ years of applications demonstrate that this approach describes many
features of low-energy nuclear structure and some features of low-energy nuclear reactions.

Symmetries can be restored with projection techniques |Φ〉
Shape fluctuations & shape coexistence can be modeled with configuration mixing (see
some of the previous slides).
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Higher-order deformations (mostly theory predictions)

Scamps, Goriely, Olsen, Bender, Ryssens, EPJ A 57 (2021) 333
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Calculations assuming reflection symmetry

⇒ For systematics of reflection asymmetric shapes see talk by Luis Robledo
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Higher-order deformations

Scamps, Goriely, Olsen, Bender, Ryssens, EPJ A 57 (2021) 333
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Coulomb excitation and shape invariants

borrowed from a talk by M. Zielinska

Magda Zielińska, CEA Saclay ISOLDE Coulex School, 27 January 2016 - p. 2/19

Coulomb excitation: what’s so great about it?

• population of excited states via purely electromagnetic interaction
between the collision partners

238U

~ 20 fm

}Δt=2 10 s. -22

40Ar

• renaissance of the technique as ideally suited for state-of-the-art RIB
facilities:

◦ beam energies available perfect for Coulomb excitation (2-5 MeV/A)

◦ high cross sections (excitation of 2+
1 : barns)

◦ practical at the neutron-rich side

◦ easy way to access non-yrast states and study their properties

Idea: excite a nucleus in-flight by the
electromagnetic potentials of another
nucleus.

wher e

E2, 0 = Qcos b ,

C. Y. Wu et al . / El ect r omagnet i c pr oper t i es

 

377

t he st r ong mi xi ng i s a consequence of t he cl ose spaci ng i n t he unper t u

 

basi s. A
phenomenol ogi cal anal ysi s of E2 mat r i x el ement s of t he 2+ st at es i n

 

- nucl ei , i n t he
pai r - pl us- quadr upol e model ' ) , i ndi cat es t hat t he coupl i ng mat r i x el ement ( . 81h217) i s
on t he or der of 5 keV ( st r ongi nt er act i GA- 1 scenar i o) , whi ch i s , 4 t i mes l ar ger t han t he
exper i ment al val ues. I ndeed, t he coupl i ng bet ween t he 8- and y- vi br at i on

 

mode i s
r at her weak i n W- nucl ei . The spi n dependence of t he coupl i ng mat r i x el ement bet ween
t he f i - and y- bands suggest s t hat mi xi ng of addi t i onal conf i gur at i ons may

 

i mpor t ant .

4. 2. STUDYOFTHECORRELATI ONS OF E2 MATRI X ELEMENTS USI NG

 

E CLI NE-
FLAU SUM- RULETECHNI QUE

The Cl i ne- Fl aumsumr ul e 10, 12, f 3 ) i s a model - i ndependent and non- ener gy- we(
sumr ul e and pr ovi des an al t er nat i ve and ver y usef ul means f or exami ni ng t he cor r el a-
t i ons among t he E2 dat a. I n anal ogy t o t he Bohr par amet er s ( . 8. y) , t he E2 oper at or s
i n t he i nt r i nsi c f r ame ar e par amet er i zed wi t h ( Q, S) under t hi s sumr ul e.

E2, ±, = 0,

 

E2, ±2 = V2Qsi nJ .

 

( 4)

The zer o- coupl ed pr oduct s of t he E2 oper at or s can be expr essed i n t er ms of Qand 6,
e. g. ,

[ E2 x E2] ° =

 

AQ2,

 

[ [ E2 x E212 x E2] ° =

 

I

 

Q3 cos( 3a) .

 

( 5)
2/ 35

The expect at i on val ues of mat r i x el ement s f or t hese r ot at i onal l y i nvar i ant zer o- coupl ed
pr oduct s f or a gi ven st at e s can be eval uat ed usi ng an i nt er medi at e st at e expansi on,
e. g. ,

( si [ E2 x E2] J l s) = ( - 1) 1s+
I s

j : ( sj E2j t ) ( t j JE2j j s) 2 2 J , ( 6)
( 21s+1)

 

i s I si tt

i s t he Wi gner 6j symbol . Thus t he expect at i on val ues of ( Q, 6) f or a st at e ar e det er -
mi ned f r oma set of E2 mat r i x el ement s accor di ng t o eq. ( 6) and t he l i ke. Ther e ar e
di f f er ent ways t o eval uat e ( Q, 6) f or coupl i ng of f our or mor e E2 oper at or s because of
var i ous i nt er medi at e coupl i ngs . The agr eement among t hemcan ser ve as a measur e of
conver gence i n var i ous summat i ons.

The par amet er s ( Q, 6) can be r el at ed t o t he Bohr par amet er s ( / 3, y) gi ven a model
assumpt i on of t he nucl ear char ge di st r i but i on . However , t hi s i s unnecessar y f or st udyi ng
t he col l ect i ve cor r el at i ons f or t he E2 dat a. Qcan be i nt er pr et ed as t he magni t ude and
6 t he asymmet r y of t he quadr upol e def or mat i on i n an abst r act space. Fi g. 11 a and
11b, f or ' 82Wand 184W, r espect i vel y, show t he expect at i on val ues of Q2 and cos 36 f or
member s of bot h t he gr ound- st at e and 7- bands . Ther e ar e f our val ues f or t he def i ni t i on
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Triaxiality from Coulomb excitation experiments: Example of 130Xe

Morrisson et al, PRC 102 (2020) 054304L. MORRISON et al. PHYSICAL REVIEW C 102, 054304 (2020)

FIG. 4. Low-lying excited states in 130Xe, considered in the
present analysis. Transitions observed in the current experiment with
a 94Mo target are marked in red. Level and transition energies are
given in keV.

state in order to extract the B(E2; 2+
1 → 01

+) value in an
independent way. The collected data were subdivided into a
total of six angular ranges (see Table I): five distinct ones
spanning the entire range of angles upon summation, and one
total range covering the entire selection of angles at once.
The number of subdivisions was limited in order to ensure
sufficient statistics in the 2+

1 → 01
+ transitions in both 130Xe

and 94Mo, and each range was taken with weight 0.5, ensuring
every event was only counted once. In 94Mo, both the re-
duced transition strength (B(E2; 2+

1 → 01
+) = 16.0(4) W.u.),

and the spectroscopic quadrupole moment of the 2+
1 state

[Qs(2+
1) = −0.13(8) eb], are known to good precision [27],

and consequently, this information could be used to normal-
ize data from the different angular ranges. The B(E2; 2+

1 →
0+

1) value for the 130Xe beam could then be extracted from
the two-dimensional χ2 surface map, calculated using the
GOSIA2 program together with a specially developed χ2 sur-
face code [28], by performing a minimization with respect to
the |⟨2+

1 ∥E2∥0+
1⟩| and |⟨2+

1 ∥E2∥2+
1⟩| matrix elements. This

analysis yielded a B(E2; 2+
1 → 01

+) = 30(+2,−7) W.u., in
good agreement with previous work [3,11,29–31,33], but with
a significant uncertainty on the extracted quadrupole moment.

In addition to the analysis performed on the beam particles,
an additional analysis was carried out for the target peaks,
by Doppler correcting for 94Mo. A significant amount of
95Mo was discovered to be present in the target, accounting
for 5(1)% of the total statistics. Additional excitation due to
this target contamination was accounted for by increasing the
uncertainty values for all γ -ray yields by 5%, when input into
GOSIA.

The analysis described above gives confidence in the
reported literature values for the 2+

1 → 0+
1 transition prob-

ability. Consequently, here, in order to extract a full set of
matrix elements from the experimental data using the standard
GOSIA code, the normalization of the data was performed
with the lifetime of the 2+

1 state. The most recent and precise
lifetime value of τ = 14.7(3) ps [29,30] was chosen, which

TABLE I. Numbers of counts in the observed γ -ray transitions
in 130Xe used in the presented data analysis. In addition, the number
of counts in the observed 2+

1 → 0+
1 γ -ray transition in 94Mo (871

keV), for different angular ranges used in the target normalization
approach analysis described in the text, is included.

130Xe 94Mo

Iπ
i Iπ

f Eγ (keV) Counts Eγ (keV) Counts

Total spectrum (θc.m. = 62–131◦)
2+

1 0+
1 536 5710(286) 871 1720(43)

4+
1 2+

1 669 900(45)
6+

1 4+
1 739 151(22)

2+
2 2+

1 586 298(24)
2+

2 0+
1 1122 51(9)

θc.m. = 111–131◦

2+
1 0+

1 536 754(29) 871 243(17)
4+

1 2+
1 669 195(15)

6+
1 4+

1 739 39(9)
2+

2 2+
1 586 81(11)

θc.m. = 94–110◦

2+
1 0+

1 536 1294(65) 871 375(21)
4+

1 2+
1 669 260(18)

2+
2 2+

1 586 81(12)

θc.m. = 85–93◦

2+
1 0+

1 536 1018(51) 871 224(16)
4+

1 2+
1 669 198(16)

2+
2 2+

1 586 63(10)

θc.m. = 74–84◦

2+
1 0+

1 536 1039(52) 871 277(18)
4+

1 2+
1 669 121(13)

2+
2 2+

1 586 44(10)

θc.m. = 62–73◦

2+
1 0+

1 536 1540(77) 871 420(21)
4+

1 2+
1 669 111(13)

2+
2 2+

1 586 45(11)

corresponds to a B(E2) of 32(1) W.u. The additional precision
of this value, compared to the one obtained in the GOSIA2
analysis, increases the sensitivity to second-order effects, and,
as a result, improves the precision of the extracted matrix
elements. The GOSIA analysis also incorporates other spec-
troscopic information such as γ -ray branching and E2/M1
mixing ratios, and the lifetimes of low-lying states (see Ta-
ble II). This information serves to constrain the final GOSIA
analysis and enters the multidimensional χ2 function fit in
the same way as the measured γ -ray intensities. Two further,
unobserved, 2+ states, at excitation energies of 2016 and
2150 keV, were also included in the GOSIA analysis. This
was in order to account for the possible excitation of these
unobserved levels in the measured γ -ray yields. The known
spectroscopic data for these states were included (see Ta-
ble II), as well as the known matrix elements, from Ref. [11],
to serve as additional constraints. However, in the analysis, the
unknown Qs of these two states were set to 0.

054304-4

Spectroscopic quadrupole moments:

QUADRUPOLE DEFORMATION OF 130XE MEASURED … PHYSICAL REVIEW C 102, 054304 (2020)

TABLE IV. Spectroscopic quadrupole moments, Qs extracted for 130Xe compared with theoretical calculations obtained with the collective
GBH-UNEDF0 model, the GCN50:82 and SN100PN shell-model interactions, Davydov-Filipov model (D-F) and the γ -soft model. The
used effective charges are indicated. Qs < 0 indicates prolate deformation and Qs > 0 indicates oblate deformation. The intrinsic quadrupole
moments (Q0), calculated from the diagonal matrix elements obtained in the present experiment assuming rigid axially symmetric rotor and
K = 0, are given in the last column.

Qs (eb)

Level ⟨I||E2||I⟩ (eb) Present GBH-UNEDF0 GCN50:82 SN100PN D-F γ -soft Q0 (eb)
eπ = 1.5e eπ = 1.53e eπ = 1.5e eπ = 1.68e
eν = 0.5e eν = 0.945e eν = 0.5e eν = 0.84e

2+
1 − 0.50(+22, − 18) − 0.38(+17, − 14) − 0.35 − 0.35 − 0.42 − 0.20 − 0.25 -0.55 -0.04 1.33(+60, − 49)

4+
1 − 0.55(16) − 0.41(12) − 0.47 − 0.53 − 0.64 − 0.53 − 0.64 -0.42 -0.07 1.13(33)

2+
2 0.1(1) 0.1(1) 0.31 0.34 0.41 0.20 0.24 0.55 0.02 -0.3(3)

found in Refs. [1,40–42]. The GBH-UNEDF0 functional is a
Skyrme-type “standard” functional in the particle-hole chan-
nel with the spin-orbit term taken as in the SkI parametrization
[43], while the pairing interaction is a sum of the standard
volume and density-dependent surface-peaked δ interaction.
The fitting of proton and neutron pairing strengths is done
simultaneously with other functional parameters. All these
parameters are fixed for the whole nuclear table. The Lipkin-
Nogami (LN) method is applied in order to avoid pairing
for magic nuclei and their neighbors collapsing. It should be
noted that in the GBH-UNEDF0 approach no fitting of the
effective charges is performed.

The GBH-UNEDF0 calculations were performed for the
even-even 118–144Xe isotopes [1]. The low-energy spectra and
B(E2; 4+ → 2+) transition probabilities were found to be in
relatively good agreement with available experimental data,
with the largest discrepancies around the semimagic 136Xe
nucleus. One should note that this was achieved after scaling
all mass parameters by a factor of 1.3, needed mainly to repro-
duce the energy spectra (the effect on the transition strengths
is much smaller). This is a common procedure; for its origin
see Ref. [1] and references herein.

The GBH-UNEDF0 energy level scheme is compared with
the experimental one in Fig. 6. The results of the GBH-
UNEDF0 calculations for 130Xe for transition strengths and
quadrupole moments, are compared with experimental values
in Tables III and IV, respectively [microscopic calculations
for the M1 transitions are not yet implemented so no B(M1)
values are determined]. Furthermore, it should be pointed out
that the agreement with experimental values is very good for
the quadrupole moments.

The potential-energy surface map for the 130Xe ground
state is shown in Fig. 5, which indicates a pronounced γ
softness for β ranging from 0 up to 0.3 where the potential
starts to increase.

The theoretical shape parameters from GBH-UNEDF0 cal-
culations are further compared to the experimental ones in
Table V.

B. Large-scale shell-model calculations

Large-scale shell-model calculations were performed with
two different interactions: GCN50:82 [44] and SN100PN
[45]. Both interactions make use of a valence space consisting

of all proton and neutron orbitals between the magic shell
number closures N = Z = 50 and N = Z = 82. Therefore,
100Sn is considered to be an inert core. 130Xe has a large
number of valence particles, with four protons and six neutron
holes relative to the Z = 50 and N = 82 shell closures.

The SN100PN interaction utilizes the jj55pna Hamil-
tonian [45] within the NUSHELLX@MSU [46] code. The
Hamiltonian itself treats four types of interactions sepa-
rately: neutron-neutron, neutron-proton, proton-proton, and
Coulomb-proton repulsion. The two-body interaction is based
on a renormalized G matrix (itself derived from the CD-Bonn
nucleon-nucleon interaction). The single-particle proton and
neutron energies are taken from the experimental levels of
133Sb and 131Sn.

The GCN50:82 interaction [44] is also based on a realistic
G matrix (derived from the CD-Bonn potential). However,
two-body matrix elements were modified by normalizing to
sets of experimental excitation energies in even-even and
even-odd semimagic nuclei, even-odd Sb isotopes and N = 81
isotones, and some known odd-odd nuclei around 132Sn. The
calculations were undertaken using the KSHELL program [47].

FIG. 5. Potential energy surface map (relative to a spherical
shape value) for the ground state of 130Xe, computed using the
GBH-UNEDF0 functional. A pronounced γ -soft shape is visible for
β ranging from 0 up to 0.3.

054304-7

QUADRUPOLE DEFORMATION OF 130XE MEASURED … PHYSICAL REVIEW C 102, 054304 (2020)

TABLE V. Experimental and theoretical quadrupole shape invariants: ⟨Q2⟩ and ⟨cos(3δ)⟩ for 0+
1 states in 130Xe. The contribution of

the individual matrix elements to the final values of ⟨Q2⟩ is shown. The ⟨Q2⟩ invariant is formed by summing all the contributions and by
multiplying the sum by 1 and by − 0.873 for ⟨cos(3δ)⟩ [41,57]. The loops containing transitional matrix elements are included twice in the
contribution to the ⟨cos(3δ)⟩ invariant as their zero-coupled products can be formed in two possible ways. Experimental results not obtained in
the present work are from Ref. [11], while the relative signs between matrix elements were adopted from the GBH calculations if they could
not be determined in this analysis.

GCN50:82 SN100PN

Experiment GBH-UNDF0 eπ = 1.5e eπ = 1.53e eπ = 1.5e eπ = 1.68e γ -soft
eν = 0.5e eν = 0.945e eν = 0.5e eν = 0.84e

State Component Contribution to
E2 × E2 ⟨Q2⟩ (e2fm4)

⟨0+
1 ||E2||2+

1 ⟩⟨21
+||E2||0+

1 ⟩ 6240 4750 4170 6760 4000 6850 6980
0+

1 ⟨0+
1 ||E2||2+

2 ⟩⟨22
+||E2||0+

1 ⟩ 45 50 20 80 10 30 5
⟨0+

1 ||E2||23
+⟩⟨2+

3 ||E2||01
+⟩ 20 2 40

⟨0+
1 ||E2||24

+⟩⟨2+
4 ||E2||01

+⟩ 45 0
⟨Q2⟩ 6350(400) 4800 4190 6840 4000 6880 7030
⟨β⟩ 0.17(2) 0.15 0.14 0.17 0.13 0.17 0.18

⟨2+
1 ||E2||01

+⟩⟨0+
1 ||E2||21

+⟩ 1250 950 830 1350 800 1370 1400
⟨2+

1 ||E2||2+
2 ⟩⟨2+

2 ||E2||21
+⟩ 1440 1350 870 1500 1030 1800 2380

⟨2+
1 ||E2||23

+⟩⟨2+
3 ||E2||21

+⟩ 35 10 1
⟨2+

1 ||E2||24
+⟩⟨2+

4 ||E2||21
+⟩ 5 0

2+
1 ⟨2+

1 ||E2||4+
1 ⟩⟨41

+||E2||2+
1 ⟩ 3350 3200 2270 3580 2160 3630 4300

⟨2+
1 ||E2||42

+⟩⟨4+
2 ||E2||21

+⟩ 25 0 1250 25 1 0 2
⟨2+

1 ||E2||43
+⟩⟨4+

3 ||E2||21
+⟩ 0 0

⟨2+
1 ||E2||44

+⟩⟨4+
4 ||E2||21

+⟩ 0
⟨2+

1 ||E2||31
+⟩⟨3+

1 ||E2||21
+⟩ 30 2

⟨2+
1 ||E2||21

+⟩⟨2+
1 ||E2||21

+⟩ 430 430 430 620 140 220 5
⟨Q2⟩ 6600(400) 5980 5860 7100 4130 7020 8090
⟨β⟩ 0.17(2) 0.16 0.16 0.18 0.13 0.18 0.19

Component Contribution to
E2 × E2 × E2 ⟨Q3 cos(3δ)⟩ (e3fm6)

⟨0+
1 ||E2||21

+⟩⟨2+
1 ||E2||21

+⟩⟨2+
1 ||E2||01

+⟩ − 312 050 − 219 300 − 194 100 − 376 403 − 106 600 − 225 700 − 36 800
⟨0+

1 ||E2||22
+⟩⟨2+

2 ||E2||22
+⟩⟨2+

2 ||E2||01
+⟩ 450 2100 800 4400 300 1050 10

⟨0+
1 ||E2||23

+⟩⟨2+
3 ||E2||23

+⟩⟨2+
3 ||E2||01

+⟩ 2 − 70 − 300
⟨0+

1 ||E2||24
+⟩⟨2+

4 ||E2||24
+⟩⟨2+

4 ||E2||01
+⟩ 0 0

0+
1 ⟨0+

1 ||E2||21
+⟩⟨2+

1 ||E2||22
+⟩⟨2+

2 ||E2||01
+⟩ 45 100 40 800 17 700 64 500 15 700 44 800 − 19 700

⟨0+
1 ||E2||21

+⟩⟨2+
1 ||E2||23

+⟩⟨2+
3 ||E2||01

+⟩ − 4700 − 700 − 900
⟨0+

1 ||E2||21
+⟩⟨2+

1 ||E2||24
+⟩⟨2+

4 ||E2||01
+⟩ 2700 0

⟨0+
1 ||E2||22

+⟩⟨2+
2 ||E2||23

+⟩⟨2+
3 ||E2||01

+⟩ 400 − 600
⟨0+

1 ||E2||22
+⟩⟨2+

2 ||E2||24
+⟩⟨2+

4 ||E2||01
+⟩ 500 1

⟨cos(3δ)⟩ 0.4(2) 0.3 0.5 0.4 0.3 0.2 0.1
⟨γ ⟩ 23(5)◦ 23◦ 20◦ 23◦ 25◦ 26◦ 28◦

[53]. Keeping the neutron charge fixed, the proton charge was
modified to reproduce the B(E2; 2+

1 → 01
+) value in 128Te

[24].
The known magnetic dipole moments in 130Xe were also

well reproduced by the shell-model calculations. This is not
surprising, since the SN100PN interaction was originally
developed to explore the magnetic moments in Sb and Te
isotopes [45]. Using effective gfactors gl,p = 1.0, gl,n = 0.0,
gs,p = 3.91, and gl,n = − 2.68 [also used for the B(M1) calcu-
lations], the following results were obtained: µ(2+

1 ) = +0.78,
µ(4+

1 ) = +1.83, and µ(2+
2 ) = +1.83 for the GCN50:82 in-

teraction, and µ(2+
1 ) = +0.58, µ(4+

1 ) = +1.57, and µ(2+
2 ) =

+0.59 for the SN100PN interaction. These compare well
with the experimental values of µ(2+

1 ) = +0.67(2), µ(4+
1 ) =

+1.7(2), and µ(2+
2 ) = +0.9(2) [54]. All values are given in

units of nuclear magnetons.
The theoretical spectroscopic quadrupole moments are

also compared with those measured during this study, as
shown in Table IV. The signs of the extracted spectroscopic
quadrupole moments are theoretically reproduced for both
states.

Both the larger predicted energies and the need to make
use of greater than usual effective charges to reproduce the
transition strengths indicate that the utilized model space is
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Summary

Subjects not covered here:

Reflection-asymmetric shapes ⇒ talk by L. Robledo

Rigorous connection between intrinsic states and laboratory observables ⇒ talk by B. Bally

Data for higher-order multipole moments (there are only very few)

Fission

Deformation effects in low-energy nuclear reaction with strongly-interacting probes

Fine structure of rotational bands and vibrational states

Neutron distributions from strongly- and weakly-interacting probes

Intrinsic shapes are non-observable for direct measurements, but they leave their fingerprint on
virtually all nuclear observables and phenomena

Structure of excitation spectrum in a given nucleus

Evolution of excitation spectra

”Collectivity”: rotational and vibrational structures in the excitation spectra, shape
coexistence, . . .

Evolution of charge radii
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